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Abstract

In this paper we investigate rotational and translational galloping instabilities due to fluid/structure interaction using

a previously developed algorithm. This numerical technique utilizes a two-dimensional spectral/hp element method and

a frame of reference transformation to ensure efficient computations. Both transverse and rotational motion of

rectangular sections of varying aspect ratio are simulated for a Reynolds number of 250 and at reduced velocities which

promote a galloping response. Qualitative comparisons with quasi-steady theory and experimental data are found to be

favourable.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of flow-induced vibration of a structure is important in many fields including aeronautical, offshore, civil

and mechanical engineering. The occurrence of flow-induced vibration is due to many different mechanisms, which are

classified in terms of their predominant effect (Naudascher and Rochwell, 1994; Deniz, 1997). Two well-known

phenomena in the problems of fluid/structure interaction are vortex-induced vibration (VIV) and galloping. VIV is

associated with synchronization, or lock-in of the structural oscillation frequency with the vortex-shedding frequency,

while galloping is driven by a time-averaged fluid force which develops in phase with the structural velocity and has a

frequency many times lower than that of vortex shedding. Lock-in occurs at reduced velocities where the vortex-

shedding frequency is comparable to the natural frequency of the structure, whereas galloping is prevalent at higher

reduced velocities where the frequency of oscillation is lower than the vortex-shedding frequency.

Both mechanisms can lead to significant oscillation amplitudes, which can potentially result in catastrophic failure of

a structure. A classic example of rotational galloping is the notorious collapse of the Tacoma Narrows Suspension

Bridge, which was essentially due to a torsional instability (Steinman and Watson, 1957; Scanlan, 1979; Scanlan and

Tomko, 1971). Transverse galloping oscillations can also be witnessed in winter when the build up of ice on long

powerlines leads to the cables undergoing large amplitude, vertical oscillations.

Extensive work has been undertaken towards the investigation of the lock-in phenomena, which has been predicted

by numerous numerical codes (Nomura, 1993; Wei et al., 1995; Anagnostopoulos, 1994; Schulz and Kallinderis, 1998;

Piperno, 1998; Li et al., 2002). Conversely, galloping instability has been the subject of very little reported research

using numerical simulation.

The use of quasi-steady theory to predict whether a structure has the potential to gallop has been widely used for

many years. It was developed by den Hartog (1956) and has generally been implemented to predict the critical reduced
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velocity for the onset of translational galloping instabilities. This has been verified experimentally by a number of

investigators (Parkinson, 1971; Blevins, 1990; Nakamura and Tomonari, 1977; Nakamura and Nakashima, 1986;

Nakamura and Mizota, 1975). In this paper quasi-steady theory is used to determine the conditions under which

rectangular structures of varying cross sectional area will undergo translational and rotational galloping and these

predictions are compared with computationally derived results.

In Section 2 of the paper the solution method is outlined. Section 3 summarizes the aerodynamic and structural

equations and governing parameters. Section 4 contains an outline of the quasi-steady formulation of the galloping

instability and comparison with numerical results. The conclusions constitute the final section.

2. Solution methods

For the problem of an elastically mounted rigid body in a low speed flow, the governing equations are the

incompressible Navier–Stokes equations with moving boundary conditions,

r � v ¼ 0; ð1Þ

@v

@t
þ ðv � rÞv ¼ �

1

r
rp þ nr2v in DðtÞ; ð2Þ

where v ¼ vbðtÞ on GðtÞ: Here v is the fluid velocity, r is the density of the fluid, p is pressure, DðtÞ represents the moving

fluid computational domain and GðtÞ denotes the interface between the flow and the body and moves with an unknown

velocity vb:
For a single rigid body, its planar motion in two dimensions can be described in terms of three displacement

components defined at the centre of gravity (Nomura and Hughes, 1992), X ¼ ðz; Z; yÞT; where z and Z are the

translational displacement components in the x and y direction, respectively, and y denotes the rotational displacement

component. We may write the governing equation for this linear, planar motion as

M .X þ D ’X þ KX ¼ %F; ð3Þ

where M;D and K are the mass, damping and stiffness matrices, respectively, %F is a vector whose components are

external forces and moment and a dot above a variable denotes differentiation with respect to time. The mounting

system for the body is assumed to have both stiffness and damping.

Instead of directly solving the coupled system of equations (2) and (3), an efficient strategy is to solve the Navier–

Stokes equations and structural equation explicitly and thereby decouple their solutions at each time step. This solution

technique is commonly known as a loosely coupled algorithm and has been observed to be stable for cases where the

structural density is much larger than the fluid density. Therefore, at each time level, we initially solve the Navier–

Stokes equations to obtain the aerodynamic force acting on the body, then use the forces as an input in the structural

solver to predict the displacement of the body at the next time level. This displacement is utilized as the boundary

condition on the structure in the Navier–Stokes solver.

The most general and widely used method to simulate moving boundary problems is the arbitrary Lagrangian–

Eulerian formulation (ALE) where the computational mesh at the far-field boundaries is stationary and the nodes on

the moving boundary take the same velocity as the structure (Nomura and Hughes, 1992). The configuration of the

computational mesh therefore changes at each time-step resulting in the Navier–Stokes solver constantly being

regenerated, leading to large distortions of the numerical grid and preventing the use of efficient direct solvers for static

meshes.

In Li et al. (2002), a numerical method is formulated which enables efficient computations by evaluating the

governing two-dimensional aerodynamic equations (1) and (2) on a fixed mesh. These equations are calculated in a

moving frame of reference which is fixed to the structure and moves rigidly with it. The relationship between this

moving frame of reference and a stationary fixed frame of reference is established, which leads to additional forcing

terms in the Navier–Stokes equation (2). However, the extra computational cost in evaluating these additional forcing

terms is small compared to that saved by evaluating the equations on a static mesh.

3. Model equations

We will consider the non dimensional form of the Navier–Stokes equations:

rn � vn ¼ 0; ð4Þ
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@vn

@tn
þ ðvn � rnÞvn ¼ �rnpn þRe�1ðrnÞ2vn: ð5Þ

The variables in the equations above have been nondimensionalized as follows:

tn ¼
tU

D
; xn ¼

x

D
; yn ¼

y

D
;

un ¼
u

U
; vn ¼

v

U
; pn ¼

p

rU2
;

Re ¼
rUD

m
¼

UD

n
; ð6Þ

where D is a characteristic length such as the section depth, and U is the freestream velocity, respectively.

Correspondingly, the forces and moment are nondimensionalized by

Fn

x ¼
Fx

rDU2
; Fn

y ¼
Fy

rDU2
; Mn

y ¼
My

rD2U2
: ð7Þ

We note that the usual lift, drag and pitching moment coefficients are given by

Cx ¼ 2Fn

x ; Cy ¼ 2Fn

y ; CM ¼ 2Mn

y : ð8Þ

The governing structural equation for the one-degree-of-freedom transverse or heaving mode is

m .y þ cy ’y þ kyy ¼ Fy; ð9Þ

where m is the mass per unit length of the body, cy is the damping constant, ky is the stiffness constant, and y denotes

the transverse location of the centre of the body. If we use the same nondimensional scales as applied to the Navier–

Stokes equations, then we obtain

.yn þ 2xy

2p
Uy

� �
’yn þ

2p
Uy

� �2

yn ¼
Fn

y

ny

¼
Cy

2ny

; ð10Þ

where

Uy ¼
U

fyD
ðreduced velocityÞ;

ny ¼
m

rD2
ðmass ratioÞ ð11Þ

and

fy ¼
1

2p

ffiffiffiffiffi
ky

m

r
ðnatural frequencyÞ;

xy ¼
cy

2
ffiffiffiffiffiffiffiffiffi
kym

p ðdamping ratioÞ: ð12Þ

For the one-degree-of-freedom torsional mode, Eq. (3) becomes

Iy .yþ cy ’yþ kyy ¼ My; ð13Þ

where Iy is the mass moment of inertia, cy is the torsional damping constant, ky is the torsional stiffness constant, and y
denotes the rotational angle of the body around the elastic centre. The right-hand side of Eq. (13) is the moment about

the elastic centre. The nondimensional form of Eq. (13) is

.yþ 2xy
2p
Uy

� �
’yþ

2p
Uy

� �2

y ¼
Mn

ny
¼

CM

2ny
; ð14Þ

where

Uy ¼
U

fyD
ðreduced velocityÞ;

ny ¼
Iy

rD4
ðmass moment of inertia ratioÞ ð15Þ
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and

fy ¼
1

2p

ffiffiffiffiffi
ky

Iy

s
ðnatural frequencyÞ;

xy ¼
cy

2
ffiffiffiffiffiffiffiffiffi
kyIy

p ðdamping ratioÞ: ð16Þ

We note that fy is the structural natural frequency for rotational motion. For the remainder of this paper, the structural

equations will be used in their nondimensionalized form.

In general, if we denote the vibrational amplitude of a particular model by A; then the dimensionless amplitude of

flow-induced vibration A=D can be regarded as a function of four dimensionless parameters: (a) Reynolds number Re;
as defined in Eq. (6); (b) reduced velocity Ured ¼ U=ðfnDÞ; where fn is the natural rotational or transverse structural

frequency; (c) mass ratio or mass moment of inertia ratio denoted by n; (d) damping factor x:
We may write this function as

A

D
¼ YðRe;Ured; n; xÞ: ð17Þ

The most important task in the study of fluid/structure interaction is to determine the relationship between the

dimensionless amplitude and the governing dimensionless parameters.

If we consider a series of rectangular cross-section bodies with varying thickness ratios L ¼ L=D; where L is the

length of the body and D its thickness, then Eq. (17) will also include a geometric parameter and becomes

A

D
¼ YðL;Re;Ured; n; xÞ: ð18Þ

4. Quasi-steady analytical formulation

The theory related to galloping is based on a quasi-steady assumption; i.e., the fluid force on the structure is assumed

to be determined solely by the instantaneous relative velocity and the angle of attack of the body (Blevins, 1990).

Strictly, this requirement is only satisfied at high reduced velocity, Ured > 20 (Bearman et al., 1987), where the vortex-

shedding frequency is significantly greater than the natural frequency of the body. However, large amplitude responses

do occur for lower reduced velocities (Blevins, 1990), for cases where the combined mass and damping is low. This

response is generally caused by vortex shedding or some combination of vortex shedding and galloping. In order to

capture pure galloping instabilities, we confine our numerical experiments to higher reduced velocities UredX20 in order

to avoid the effect of vortex-induced resonance. It has been found that the thickness ratio of rectangular sections plays

an important role in the mechanism of instability (Washizu and Ohya, 1978; Washizu et al., 1980; Blevins, 1990;

Nakamura and Tomonari, 1977). For example, in their free oscillation experiment, Nakamura and Tomonari (1977)

found that soft transverse galloping, the spontaneous build up of oscillations from rest, only occurs for sections longer

than a critical thickness ratio of 0:67: In this paper, the response of a range of rectangular sections at zero incidence with

thickness ratios from 1 to 5 is investigated. The effect of increasing damping factor and mass ratio will also be

considered.

4.1. Heaving/transverse mode

The following quasi-steady analysis to evaluate the aerodynamic damping on a heaving or transversely moving

structure has been previously performed by many authors (Blevins, 1990; den Hartog, 1956) and is included here for

U

Ur

α

Fy

Fx
D

L

-y

FD

FL

Fig. 1. Effective angle of incidence on a rectangular body.
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completeness and to stimulate interest in the subsequent numerical experiments. Fig. 1 illustrates a body oscillating in a

vertical direction under the influence of forces generated by a horizontal steady fluid flow of velocity U :
Transverse response of the body results in a velocity relative to the structure of Ur; at an effective angle of incidence

a; where

U2
r ¼ U2 þ ’y2 ð19Þ

and

tan a ¼ �
’y

U
: ð20Þ

Following aeronautical practice, the angle of incidence is positive for a clockwise rotation of the body in a flow

travelling from left to right.

The force on the body per unit length is

Fy ¼
1

2
rU2DCy; ð21Þ

where Cy is the vertical or normal force coefficient which is related to the lift and drag coefficients, CL and CD

respectively, by

Cy ¼
U2

r

U2
ðCL cos aþ CD sin aÞ: ð22Þ

Due to the nature of the quasi-steady analysis the normal force, lift and drag coefficients used in Eq. (22) should be

taken as time-averaged values, where the variation of these coefficients due to high-frequency effects are ignored.

Though it is not explicitly illustrated, subsequent appearances of these force coefficients should be read as time-

averaged values. For small effective angles of attack, Eq. (20) can be approximated by

a ¼ �
’y

U
; ð23Þ

and Cy can be expanded about a ¼ 0; resulting in the relationship,

CyDCy a¼0 þ
@Cy

@a

����
����
a¼0

a: ð24Þ

Assuming Cyja¼0 ¼ 0 and using Eq. (23) gives

CyD�
@Cy

@a

����
a¼0

’y

U
: ð25Þ

By utilizing the representation of Cy in Eq. (25), we can formulate an expression for the vertical motion of the body,

.yn þ 2xy

2p
Uy

� �
’yn þ

2p
Uy

� �2

yn ¼ �
1

2ny

@Cy

@a

�����
a¼0

’yn: ð26Þ

Considering Eq. (26) the net damping of the system, Cy; can be shown to be

Cy ¼ 2xy

2p
Uy

� �
þ

1

2ny

@Cy

@a

����
a¼0

; ð27Þ

where Cyo0 will result in galloping oscillations, since the solution of Eq. (26) would be associated with exponentially

growing oscillatory solutions. The structural damping, xy; is always expected to be positive, therefore a necessary

condition for instability is

@Cy

@a

����
a¼0

o0: ð28Þ

4.2. Torsional/rotational mode

Similar to the analysis of the transverse mode, the net damping on a rotating structure, can be approximately

evaluated using quasi-steady theory. Again this analytical investigation has been performed previously and the

subsequent derivation mainly follows that of Blevins (1990). As we have seen, the relative angle of attack of a body

vertically oscillating is proportional to its vertical velocity, here it will be shown that for a rotating body the relative

angle of attack is proportional to its physical angle of attack, y; and its rotational velocity, ’y:
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The relative angle of attack, a and relative velocity, Ur; at a radius R from the centre of rotation of a rotating body

can be evaluated as

a ¼ y� tan�1 ½R’y sin g=ðU � R’y cos gÞ
; ð29Þ

U2
r ¼ ðR’y sin gÞ2 þ ðU � R’y cos gÞ2; ð30Þ

where the variables are defined in Fig. 2 and g ¼ p=2� y: The effective angle of attack, a; is obviously dependent on the

physical angle of attack, y; though there is also a contribution due to the rotational velocity of the body.

The rotational motion at the leading edge of the body results in a decrease of the relative free-stream velocity in the

horizontal direction. Therefore ðU � R’y cos gÞ is the velocity of the horizontal free stream when the rotational velocity

of the body is considered. The vertical motion of the leading edge can be related to the quasi-steady theory for purely

heave or transverse motion where a nondimensional positive transverse velocity was shown to be equivalent to a

negative effective angle of attack. The leading edge of the body, for small oscillations about a mean displacement, can in

a linear sense be said to be undergoing purely vertical motion. As with the transverse theory this vertical motion can be

related to an effective angle of attack.

The length R is a characteristic radius at which the relative angle of attack due to the rotational velocity of the body is

considered. This technique has been used extensively for many different geometries (Blevins, 1990; Nakamura and

Mizota, 1975; Sisto, 1953) and in the case of rectangular sections, R is taken to be the half-chord length, D=2 (Blevins,

1990; Nakamura and Mizota, 1975). This choice of R results in the instantaneous relative angle of attack, a; being
evaluated at the leading edge where the most significant forces for rotational motion are generated. For small angles

and velocity, Eqs. (29) and (30) reduce to

aEy�
R’y
U

; ð31Þ

UrEU : ð32Þ

Therefore the time-averaged value of CM can be expanded about a ¼ 0; resulting in the relationship

CMD
@CM

@a

����
a¼0

a; ð33Þ

D
@CM

@a

����
a¼0

y�
R’y
U

� �
: ð34Þ

The same method adopted for the transverse galloping analysis is now applied to formulate a condition which

will determine the potential of a body to undergo rotational galloping. An equation of motion governing the

rotation of the body can be formulated by combining the structural equation (14) and the expansion of CM in Eq. (34)

to arrive at

.yþ 2xy
2p
Uy

� �
’yþ

2p
Uy

� �2

y ¼
1

2ny

dCM

da

�����
a¼0

ðy� Rn ’yÞ; ð35Þ

where Rn ¼ R=D: Considering Eq. (35) the net damping of the system, Cy; is

Cy ¼ 2xy
2p
Uy

� �
þ

Rn

2ny

dCM

da

����
a¼0

: ð36Þ

U

θ

θ

θ

θ

α

Rθ cosγ 

Ur

RθRθ sinγ 
γ

U

Fig. 2. Analytical model used in quasi-steady analysis of rotational galloping.
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The conditionCyo0 will result in rotational galloping oscillations. As the structural damping for rotational motion, xy;
is always expected to be positive, a necessary condition for instability under this linearized analysis is

@CM

@a

����
a¼0

o0 ð37Þ

when a51:

5. Numerical investigation of transverse galloping

To enable a prediction of the instability of a series of rectangular sections with increasing thickness ratio L; a number

of numerical experiments were conducted to evaluate the force coefficients Cy; for a range of angles of attack. The full

computational mesh and an enlargement centred on the body for a rectangular structure with L ¼ 4 can be seen in

Fig. 3. The mesh consists of 1303 high-order sub-domains and the computations were carried out using a polynomial

expansion basis of order 5. Spatial and temporal convergence tests for an oscillating section can be found in Appendix

A.

The results for thickness ratios ranging from 1 to 5 can be seen in Fig. 4, where Cy is represented as a function of a:
The values of dCy=daja¼0 are contained in Table 1.

According to the quasi-steady theory, if the variation of force coefficient with angle of attack has a negative slope

around the origin, the corresponding structure is potentially unstable to transverse galloping. Therefore by studying the

results in Fig. 4 and Table 1, the structures with thickness ratios L ¼ 1 (square section), 1:5 and 2 may be susceptible to

transverse galloping. To test this hypothesis these cases were simulated numerically by subjecting the sections to a fluid

flow parallel to the x-axis and allowing them to oscillate with fluid and structural parameters set to: xy ¼ 0:0037;
Uy ¼ 40; n ¼ 20 and Re ¼ 250:

(-25D,30D) (55D,30D)

(-25D,-30D) (55D,-30D)

(-5D,5D) (10D,5D)

(-5D,-5D) (10D,-5D)

Fig. 3. Mesh configuration for numerical experiments.
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The results are presented in Fig. 5, where as expected the rectangular sections with thickness ratios L ¼ 1 and 1:5
experience large-amplitude oscillations (approximately 100% of the thickness of the cylinder). From the plots shown in

Figs. 4(a) and (b), we see that as the angle of attack increases, it eventually enters a stable range, from the point of view

of the quasi-steady analysis. Therefore we expect an increase in effective angle of incidence to lead to a reduction in the

magnitude of the applied aerodynamic force. Applying the quasi-steady analysis in this manner suggests a mechanism

as to why the large oscillation amplitudes due to the galloping instability can be sustained without growing unbounded.

For a thickness ratio of L ¼ 2; the amplitude of the oscillations is reduced (approximately 0:015% of the thickness of

the cylinder), though low-frequency oscillations are observed, indicating a galloping motion. Superimposed on this low-

frequency modulation is a high-frequency motion due to vortex shedding. The low recorded amplitude is possibly due

to the fact that the instability range and magnitude of dCy=da for this case is very small, see Fig. 4(c) and Table 1.

For larger L; transverse galloping is suppressed, as predicted by the quasi-steady theory. These numerical results are

consistent with the experimental results of Washizu and Ohya (1978), which show that no transverse galloping exists for

L > 2:5: At higher values of L only vortex-induced oscillations are observed, which is illustrated in the response time

history plotted in Fig. 5(d). The agreement between the experimental results of Washizu et al. (1980) and the current

numerical results may be surprising when considering the disparity in Reynolds number. The experiments were

conducted at a Reynolds number of E1� 105 while the numerical results were performed at Re ¼ 250: However, we
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(a) (b)

(c)

(e) (f)

(d)

Fig. 4. Lift force coefficients against the angle of attack a (deg.) for different thickness ratios (L) of rectangle cylinders. (a) L ¼ 1; (b)
L ¼ 1:5; (c) L ¼ 2; (d) L ¼ 3; (e) L ¼ 4; (f) L ¼ 5:

Table 1

Variation of the lift coefficient against angle of attack in radians about a zero effective angle of attack for rectangular sections of

increasing aspect ratio

L 1 1.5 2 3 4 5

dCy

da
ja¼0

�2.69 �5.44 �1.60 14.4 7.39 44.8
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note that sharp-edged bodies such as the rectangular sections have well-defined separation points which show no

significant movement for changes in Reynolds number. The reattachment of the separated shear layers is Reynolds

number dependent, though it appears from the agreement between the experimental and numerical results that this

difference has little effect on the stability or otherwise of the sections. Another significant difference between the

experimental and numerical results is the restriction of the numerical experiments to two-dimensional flow. It has been

shown that this restriction has some effect on the quantitative comparison of the amplitude of the unstable motions, but

less effect on the point of instability (Robertson et al., 2002, 2001). At low oscillation amplitudes, that is those prior to the

galloping instability, the vortical structures produced experimentally may have a finite correlation length implying a

decorrelation of the forces and moments along the length of the bridge deck section. It has been shown for circular

cylinders that when the oscillations increase in size the vortical structures become homogeneous along the length of the

body (Kozakiewicz et al., 1992; Sumer et al., 1994). In summary, the three-dimensionality of the physical experiments can

have an effect on the quantitative oscillation amplitudes, without affecting the reduced velocity for the onset of galloping.

To investigate the effect of increasing reduced velocity on galloping, the motion of a section with L ¼ 1 was

calculated at three values of reduced velocity. The time histories of the amplitude are shown in Fig. 6. The results

indicate an increase of amplitude with a corresponding increase in reduced velocity. This is consistent with the quasi-

steady linear theory, Eq. (27), which predicts a decrease in the aerodynamic damping for an increase in the reduced

velocity. Though it must be remembered that Eq. (27) does not allow us to predict the amplitude of the galloping

oscillations, it can be inferred that, for a given body, a reduction in the damping may lead to an increase of the

amplitude of the oscillations.

(a) tU/D

y/
D

400 800200 1000 1200600

0.0

1.0

-1.0

(b)

y/
D

tU/D
200

0.0

400 800 1000

-1.0

1.0

-0.5

0.5

600

(c) tU/D

y/
D 0.0

600 800400200

-0.01

-0.02

0.02

0.01

(d) tU/D

y/
D

0.0

600 800400200

-0.01

-0.02

0.02

0.01

Fig. 5. Transverse galloping responses: Re ¼ 250; xy ¼ 0:0037;Uy ¼ 40; ny ¼ 20: (a) L ¼ 1; (b) L ¼ 1:5; (c) L ¼ 2; (d) L ¼ 3:
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tU/D

y/
D

300200 250 350 400

0.1

0.0

-0.1

Fig. 7. Vortex-induced oscillation: Re ¼ 250; xy ¼ 0:0037; Uy ¼ 6:0; ny ¼ 10; L ¼ 1:5:

tU/D

y/
D

400 600 800

0.0

1.0

2.0

-2.0

-1.0

Fig. 6. Transverse galloping responses: Re ¼ 250; xy ¼ 0:0037; L ¼ 1; ny ¼ 10: (a) F; Uy ¼ 20; (b) :::::::::; Uy ¼ 40; (c) � � �;
Uy ¼ 80:

Fig. 8. Comparison of flow patterns for vortex-induced response, transverse galloping and fixed rectangular sections: Re ¼ 250;
xy ¼ 0:0037; L ¼ 1:5; ny ¼ 10: (a) Vortex-induced resonance, Uy ¼ 6; (b) transverse galloping, Uy ¼ 40; (c) fixed.
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The quasi-steady theory predictions are only valid for small oscillations about the origin, as the amplitude of the

oscillations increases nonlinear flow behaviour not accounted for in the quasi-steady analysis may lead to the saturation

of the large amplitude oscillations. Therefore, whilst the quasi-steady theory predicts that the oscillations will become

unbounded in time, it can be seen from Fig. 6 that the oscillations are still bounded due to nonlinear flow behaviour up

to at least a reduced velocity of Uy ¼ 80:
A comparison between galloping and vortex excited resonance was also performed for the rectangular section of

thickness ratio equal to 1:5: The Strouhal number for this section was estimated to be 0:158: Therefore we considered a

reduced velocity of 1=0:158E6; which produced vortex lock-in oscillations as can be seen in Fig. 7. For this resonant

case, the oscillation amplitude is much smaller than those recorded for galloping at higher reduced velocities. A

comparison of the flow patterns for vortex-induced resonance, galloping and a fixed structure is illustrated in Fig. 8,

where it is apparent that the longitudinal spacing between vortices is reduced for the vortex lock-in case when compared

to the galloping and fixed structure cases. This illustrates the quasi-steady nature of the flow for the galloping structure

since the vortex pattern and spacing are very similar to that of the fixed body, whereas the unsteady, high-frequency

vortex-induced motion exhibits a decrease in spacing of the shed vortices.

The numerical results generated here are in agreement with the theory proposed by Parkinson (1971) to explain the

transverse (or heave) galloping mechanism. He theorized that the motion of a rectangular structure led to the separated

shear layers above and below the section becoming asymmetric. The closely lying shear layer produces a greater suction

(a) α = 0 o

(b) α = 3 o

(c) α = 6 o

Fig. 9. Averaged vorticity field, pressure distribution (white indicating positive pressure and black negative) for a fixed square section

at Re ¼ 250: (a) a ¼ 0�; (b) a ¼ 3�; (c) a ¼ 6�:
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(a) α = 0 o

(b) α = 6 o

(c) α = 1 2o

Fig. 10. Averaged vorticity field, pressure distribution (white indicating positive pressure and black negative) for a fixed rectangular

section of L ¼ 4 at Re ¼ 250: (a) a ¼ 0�; (b) a ¼ 6�; (c) a ¼ 12�:
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(e)

Fig. 11. Vorticity field, pressure distribution (white indicating positive pressure and black negative) and displacement time-history of

galloping rectangular section: L ¼ 1; Re ¼ 250; xy ¼ 0:0037; ny ¼ 10; Uy ¼ 40:
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on the body than a more distant layer and therefore a pressure difference is formed across the body. Fig. 9 shows the

time-averaged flow field and pressure distribution, in terms of Cp; around the square section for increasing fixed angles

of attack, a: The shear layers are asymmetric when a ¼ 3�; causing a pressure difference which is not immediately

apparent from Fig. 9(b), but is implied by the variation of Cy with a shown in Fig. 4(a). The pressure applied on the

bottom edge of the section is of a higher magnitude than that applied on the top edge. An increase to 6� leads to a larger

pressure difference due to the greater asymmetry of the shear layers. Since a ¼ � ’y=U ; the motion of the body leads to

an asymmetry of the shear layers and a force in the direction of the motion of the body, thereby causing large

amplitude, unstable oscillations.

For higher aspect ratio rectangular sections, L > 2:5; the top shear layer reattaches or nears reattachment for positive

displacements about a ¼ 0: This results in a pressure difference which exerts a force in the opposite direction to the

motion of the section. The aerodynamic damping is therefore positive and the oscillations are stable. The reattaching

shear layers and pressure differential are illustrated in Fig. 10 for a rectangular section of L ¼ 4 and Re ¼ 250 at

various effective angles of attack a:
Fig. 11 shows the vorticity field around a moving rectangular section of aspect ratio L ¼ 1 undergoing a vertical

galloping motion, and the resulting pressure distribution in terms of Cp: The displacement time history of the section is

also shown in Fig. 11, with the position of the body at the various snapshots highlighted. It can be seen that at the

points (b) and (d) the body is close to its maximum displacement and therefore ’y and a are approximately zero.

Consequently, the shear layers are predominantly symmetric, resulting in a minimal force acting on the body. In

contrast to this the asymmetric vorticity fields in Figs. 11(a) and (c), where a is negative and positive, respectively,

indicate the possibility of a pressure difference acting in the direction of motion. Therefore, the structure is taking

energy from the fluid, resulting in unstable, growing oscillations.

6. Numerical investigation of rotational galloping

The previous numerical experiments undertaken in Section 5 to evaluate @Cy=@a also provide the variations of CM

against a: These results are shown in Fig. 12 and will be compared with the dynamic numerical simulations discussed
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Fig. 12. Moment coefficient, CM ; against angle of attack a (deg). (a) L ¼ 1; (b) L ¼ 1:5; (c) L ¼ 2; (d) L ¼ 3; (e) L ¼ 4; (f) L ¼ 5:

I. Robertson et al. / Journal of Fluids and Structures 17 (2003) 681–699 693



below. The values of dCM=daja¼0 are also given in Table 2. The data in Fig. 12 and Table 2 indicate that all the sections

considered have the potential to gallop as the value of dCM=da about a ¼ 0 is negative for all cases. This is consistent

with the findings of other authors (Blevins, 1990; Nakamura and Mizota, 1975; Luo et al., 1998), who consequently

went on to show experimentally that bodies with dCM=dao0 are dynamically unstable.

The dynamic numerical experiments were performed by allowing the section to rotate when acted upon by an

oncoming free-stream parallel with the x-axis. For the square section, L ¼ 1; we see from Fig. 13 that there are two

distinct frequencies appearing in the time history of the nondimensional oscillation amplitude, the high frequency

relates to the oscillating force produced by the vortex shedding, and the low frequency indicates a galloping

motion. The low amplitude of the galloping oscillations is expected from the very small value of dCM=da for this

geometry.

For all sections of aspect ratio greater than one, the numerical results in Figs. 14–17 show large-amplitude galloping

oscillations for a reduced velocity of 40. For the cases with no structural damping, xy ¼ 0; the amplitude appears to be

tU/D

θ

200

0.0

0 400

0.2

0.1

100 300

-0.1

-0.2

Fig. 13. Free rotation: L ¼ 1; xy ¼ 0; Uy ¼ 40; ny ¼ 100:

Table 2

Variation of the moment coefficient against angle of attack in radians about a zero effective angle of attack for rectangular sections of

increasing aspect ratio

L 1 1.5 2 3 4 5

dCM

da
ja¼0

�0.516 �1.49 �2.46 �3.21 �9.74 �2.06

Fig. 14. Free rotation: Re ¼ 250; L ¼ 2; Uy ¼ 40; ny ¼ 100; (a) xy ¼ 0; (b) xy ¼ 0:1:
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unbounded. However, this cannot be confirmed due to the limitations of the computational code, which is not valid for

very high amplitudes of displacement due to the implementation of the boundary conditions (Li et al., 2002). The

galloping oscillations have been limited by increasing the damping ratio, xy; to a sufficiently large value, as seen in sub-

plots (b) of Figs. 14–17.

The motion of a rectangular section with L ¼ 4; ny ¼ 400; xy ¼ 0:25; Uy ¼ 40 and Re ¼ 250 can be seen in Fig. 18,

where the flow field is represented as vorticity contours and the pressure distribution given in terms of Cp: The large

pressure variations at time levels (a) and (c) occur when the rotational displacement is at its greatest and together with

the time history of the displacement in Fig. 18(e) it can be seen that the moment and displacement are largely in phase.

However, it is the component of the moment which is in phase with the velocity that causes the instability of the motion.

The vorticity fields associated with the component of the moment in the direction of motion can be seen at time levels

(b) and (d), where it is apparent that the pressure distribution is such that the moment of the section is in the direction of

motion of the body, thus causing unstable oscillations.

Fig. 15. Free rotation: Re ¼ 250; L ¼ 3; Uy ¼ 40; ny ¼ 100; (a) xy ¼ 0; (b) xy ¼ 0:5:

Fig. 16. Free rotation: Re ¼ 250; L ¼ 4; Uy ¼ 40; ny ¼ 400; (a) xy ¼ 0; (b) xy ¼ 0:25:
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7. Conclusions

We have reviewed the quasi-steady analysis of transverse and rotational galloping and presented numerical

simulations which dynamically predict the galloping modes. The numerical results for both transverse and rotational

galloping are consistent with the predictions of quasi-steady analysis although only a qualitative agreement is observed.

x

x

x

x
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c d
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(e)
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(c)

(b)

(d)

Fig. 18. Vorticity field, pressure distribution (white indicating positive pressure and black negative) and displacement time-history of

galloping rectangular section: L ¼ 4; Re ¼ 250; xy ¼ 0:25; ny ¼ 400; Uy ¼ 40:

Fig. 17. Free rotation: Re ¼ 250; L ¼ 5; Uy ¼ 40; ny ¼ 400; (a) xy ¼ 0; (b) xy ¼ 0:6:
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Much of the work is in qualitative agreement with experimental data (Parkinson, 1971; Blevins, 1990; Washizu and

Ohya (1978)) obtained at a higher Reynolds numbers ðE1� 105Þ than the current numerical data ð¼ 250Þ: This
observation may well be related to the Reynolds number independent separation point of the rectangular structures

considered although we note that the reattachment length of a separated shear layer is Reynolds number dependent

(Parkinson, 1971).

To conclude, a detailed analysis of low Reynolds number flow past different aspect ratio rectangular cylinders which

are allowed to either translate vertically or rotate has been performed.

tU/D
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710 720700 730
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-20
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Fig. 20. Time history of rotational displacement for: F; p ¼ 6; � � � � �; p ¼ 4; and � � �; p ¼ 2:

Table 3

Temporal convergence of the displacement of a rotating body with an aspect ratio of L ¼ 4 at tU=D ¼ 725

Dt y % difference to Dt ¼ 0:0005

0.002 13.4933 0.42

0.001 13.5209 0.21

0.0005 13.5497 0

Table 4

Spectral element spatial convergence of the displacement of a rotating body with an aspect ratio of L ¼ 4 at tU=D ¼ 725

Polynomial order (P) y % difference to P ¼ 6

2 14.0421 3.6

4 13.5497 0.12

6 13.5331 0
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Fig. 19. Time history of rotational displacement for: F; Dt ¼ 0:0005; � � �; Dt ¼ 0:001; and � � � � �;Dt ¼ 0:002:
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Appendix A. Spatial and temporal convergence

Spatial and temporal convergence is illustrated for the case of a rectangular body with an aspect ratio L ¼ 4 undergoing

large-amplitude rotational galloping motion. The flow and structure are described by the following parameters: L ¼ 4;
ny ¼ 400; xy ¼ 0:25; Uy ¼ 40 and Re ¼ 250: Time histories of the rotational displacement for increasing computational

time increments are shown in Fig. 19. The three time histories are indistinguishable, with the two smallest time increments

differing by approximately 0.2%. The percentage error between the results can be seen in Table 3.

Time histories of the rotational displacement for increasing polynomial order of the expansion basis are shown in

Fig. 20. Spatial convergence is illustrated by the time histories when using polynomial orders of 4 and 6. The histories

differ by approximately 0.1%. The percentage error between the results can be seen in Table 4.
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